关于GDP与其他经济因素关系的计量分析
【摘要】本文主要是以GDP与其他经济因素关系建立模型,想通过计量经济学的研究手段来阐述影响GDP的因素,但因水平有限,中间不乏缺陷,还希望大家多多见谅。
GDP是指一个国家或地区范围内的所有常住单位,在一定时期内生产最终产品和提供劳务价值的总和。GDP的增长对于一个国家有着十分重要的意义。它是衡量一国在过去的一年里所创造的劳动成果的重要指标,而研究它的影响因素不仅可以很好的了解GDP的经济内涵,而且还有利于我们根据这些因素对GDP影响大小来制定工作的重点以便更好的促进国民经济的发展。
我把GDP的影响因素分为以下四个因素: x2 能源消费总量(单位:万吨标准煤) x3 进出口贸易总额(单位:亿元) x4 固定资产投资(单位:亿元)x5货币供应量(单位:亿元) 数据如下:
obs 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
X2 98703.00 103783.0 109170.0 115993.0 122737.0 131176.0 138948.0 137798.0 132214.0 133831.0 138553.0 143199.0 151797.0 174990.0 203227.0 224682.0 246270.0 265583.0
X3 5560.100 7225.800 9119.600 11271.00 20381.90 23499.90 24133.80 26967.20 36849.70 29896.20 39273.20 42183.60 51378.20 70483.50 95539.10 116921.8 140971.4 166740.2
X4 4516.900 5594.500 8080.100 13072.30 17042.10 20019.30 22913.50 24941.10 28406.20 29854.70 32917.70 37213.49 43499.91 55566.60 70477.40 88773.60 109998.1 137324.0
X5 15293.40 19349.90 25402.20 34879.80 46923.50 60750.50 76094.90 90995.30 104498.5 119897.9 134610.4 158301.9 185007.0 21222.80 254107.0 298755.7 345603.6 403442.2
Y 18667.80 21781.50 26923.50 35333.90 48197.90 60793.70 71176.60 78973.00 84402.30 89677.10 99214.60 109655.2 120332.7 135822.8 159878.3 183217.4 211923.5 249529.9
ui 随机扰动项。
一、建立模型:
根据GDP的定义,GDP=消费+投资+净出口,而x2,x3 ,x4,x5与消费,投资及净出口有着一定的线性相关关系,基于数据的有限和操作的方便,我们把模型设成以下形式:
Y12X23X34X45X5ui
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:16 Sample: 1990 2007
Included observations: 18 Variable C X2 X3 X4 X5 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -38947.54 0.644973 -0.674728 1.608460 0.054800 Std. Error 60558.91 0.591130 1.030052 1.148035 0.075973 t-Statistic -0.643135 1.091085 -0.655042 1.401056 0.721304 Prob. 0.5313 0.2950 0.5239 0.1846 0.4835 66546.65 22.07777 22.32510 101.1758 0.000000
0.968877 Mean dependent var 100305.7 0.959301 S.D. dependent var 13425.08 Akaike info criterion 2.34E+09 Schwarz criterion -193.6999 F-statistic 0.255805 Prob(F-statistic)
将上述的回归结果整理如下:
Y -38947.54 0.644973X 2 - 0.674728X 3 1.608460X 4 0.054800X 5
R0.968877 R0.959301 F=101.1758
从回归结果看,可决系数很高,F值很大,但在显著性水平0.05下,各项的回归系数都不显著,因此回归方程不能投入使用;该模型很可能存在多重共
2线性。R和F值大反映了模型中各解释变量联合对Y的影响力显著,而t值小于临界值恰好反映了由于解释变量共线性的作用,使得不能分解出各个解释变量对Y独立影响。
22
二、多重共线性的检验
用Eviews计算解释变量之间的简单相关系数:
X2 X3 X4 X5
X2 1.000000 0.993682 0.991121 0.923330
X3 0.993682 1.000000 0.996958 0.929735
X4 0.991121 0.996958 1.000000 0.933410
X5 0.923330 0.929735 0.933410 1.000000
由相关系数矩阵可以看出,各解释变量相互之间的相关关系系数较高,证实确实存在严重多重共线性。同时也证明了,虽然整体上拟合较好,但不能分解出各个解释变量对Y独立影响。
三、模型修正
(1)运用OLS方法逐一求Y对各个解释变量的回归,结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。 Eviews过程如下:
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:45 Sample: 1990 2007
Included observations: 18 Variable C X2 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient -103838.4 1.325298 Std. Error 11106.77 0.068868 t-Statistic -9.349111 19.24395 Prob. 0.0000 0.0000 66546.65 22.03016 22.12909 370.3298 0.000000
0.958585 Mean dependent var 100305.7 0.955996 S.D. dependent var 13959.55 Akaike info criterion 3.12E+09 Schwarz criterion -196.2714 F-statistic 0.290962 Prob(F-statistic)
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:46 Sample: 1990 2007 Included observations: 18 Variable C X3 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient 31237.78 1.353688 Std. Error 4890.460 0.070659 t-Statistic 6.387494 19.15801 Prob. 0.0000 0.0000 0.958228 Mean dependent var 100305.7 0.955617 S.D. dependent var 14019.57 Akaike info criterion 3.14E+09 Schwarz criterion -196.3486 F-statistic 0.256686 Prob(F-statistic)
66546.65 22.03874 22.13767 367.0293 0.000000
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:48 Sample: 1990 2007 Included observations: 18 Variable C X4 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood
Coefficient 27509.40 1.746618 Std. Error 4610.218 0.083343 t-Statistic 5.967049 20.95700 Prob. 0.0000 0.0000 0.964850 Mean dependent var 100305.7 0.962653 S.D. dependent var 12860.31 Akaike info criterion 2.65E+09 Schwarz criterion -194.7951 F-statistic
66546.65 21.86612 21.96505 439.1958
Durbin-Watson stat 0.171800 Prob(F-statistic) 0.000000
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:49 Sample: 1990 2007 Included observations: 18 Variable C X5 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient 31482.02 0.517225 Std. Error 9092.650 0.051476 t-Statistic 3.462359 10.04787 Prob. 0.0032 0.0000 0.863201 Mean dependent var 100305.7 0.854651 S.D. dependent var 25370.71 Akaike info criterion 1.03E+10 Schwarz criterion -207.0252 F-statistic 1.896935 Prob(F-statistic)
266546.65 23.22502 23.32395 100.9597 0.000000
其中,加入X4方程R0.962653为最大,故以X4为基础,顺次加入其他变
量逐步回归。
(2)逐步回归,将其余解释变量逐一代入上式
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:52 Sample: 1990 2007 Included observations: 18 Variable C X2 X4 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient -14713.16 0.423187 1.195648 Std. Error 48169.12 0.480540 0.631246 t-Statistic -0.305448 0.880648 1.894107 Prob. 0.7642 0.3924 0.0777 66546.65 21.92682 22.07521 216.9050 0.000000 0.966578 Mean dependent var 100305.7 0.962122 S.D. dependent var 12951.48 Akaike info criterion 2.52E+09 Schwarz criterion -194.3414 F-statistic 0.145011 Prob(F-statistic)
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:53 Sample: 1990 2007
Included observations: 18 Variable C X3 X4 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 27296.17 -0.088610 1.860208 Std. Error 5188.848 0.858638 1.104064 t-Statistic 5.260545 -0.103198 1.684874 Prob. 0.0001 0.9192 0.1127 66546.65 21.97652 22.12492 206.0245 0.000000 0.964875 Mean dependent var 100305.7 0.960192 S.D. dependent var 13277.36 Akaike info criterion 2.64E+09 Schwarz criterion -194.7887 F-statistic 0.179436 Prob(F-statistic)
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:54 Sample: 1990 2007 Included observations: 18 Variable C X4 X5
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient 27043.90 1.588987 0.052872
Std. Error 4727.033 0.235896 0.073854
t-Statistic 5.721115 6.735961 0.715893
Prob. 0.0000 0.0000 0.4851
0.966012 Mean dependent var 100305.7 0.961480 S.D. dependent var 13060.83 Akaike info criterion 2.56E+09 Schwarz criterion -194.4927 F-statistic 0.203890 Prob(F-statistic)
66546.65 21.94363 22.09203 213.1633 0.000000
再次依据调整后的可决系数最大原则,选取调整后可决系数最大所对应的解释变量作为新进入模型的候选变量,将这个候选变量的调整后可决系数与上一步中进入模型解释变量的调整后可决系数加以比较,若是大于上一步的调整后可决系数,则将候选变量加入模型,若是小于,则将停止逐步回归。经查X2的调整后可决系数最大,故X2作为第二个解释变量进入回归模型。 (3) 继续逐步回归
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:56 Sample: 1990 2007 Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob.
C X2 X3 X4 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat -37401.65 0.634108 -0.683271 1.796935 59475.04 0.580725 1.012184 1.098583 -0.628863 1.091925 -0.675047 1.635685 0.5396 0.2933 0.5106
4 0.1242 4 0.967632 Mean dependent var 100305.7
0.960696 S.D. dependent var 13193.06 Akaike info criterion 2.44E+09 Schwarz criterion -194.0531 F-statistic 0.215166 Prob(F-statistic) 66546.65 22.00590 22.20376 139.5079 0.000000
Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time: 22:57 Sample: 1990 2007
Variable C X2 X4 X5 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Included observations: 18 Coefficient -16561.85 0.436829 1.012801 0.055372 Std. Error 48964.90 0.488194 0.686331 0.074403 t-Statistic -0.338239 0.894787 1.475676 0.744217 Prob. 0.7402 0.3860 0.1622 0.4691 66546.65 21.99913 22.19699 140.4871 0.000000
24
4
0.967850 Mean dependent var 100305.7 0.960961 S.D. dependent var 13148.49 Akaike info criterion 2.42E+09 Schwarz criterion -193.9922 F-statistic 0.197522 Prob(F-statistic)
在X2、X4、基础上加入X5后的方程R0.960961,与上一步的调整后可
决系数相比要小,故可以认为逐步回归终止。
所以修正后的最终的回归模型为: Y -14713.16 0.423187X 2 1.195648X 4
经济意义检验:由模型可知, GDP变化与能源消费总量及固定资产投资有关,而这与相关的经济理论并没有向悖,因此此模型具有一定经济意义。
四、模型预测
1、内插预测
400000Forecast: YFActual: YForecast sample: 1990 2007Included observations: 18Root Mean Squared Error 105936.0Mean Absolute Error 85171.86Mean Abs. Percent Error 548.8368Theil Inequality Coefficient 0.790710 Bias Proportion 0.646406 Variance Proportion 0.348435 Covariance Proportion 0.0051593000002000001000000-10000090929496YF9800020406?2 S.E.
2、外推预测
400000Forecast: YFActual: YForecast sample: 1990 2008Included observations: 18Root Mean Squared Error 11409.12Mean Absolute Error 10275.96Mean Abs. Percent Error 18.17863Theil Inequality Coefficient 0.047908 Bias Proportion 0.000000 Variance Proportion 0.007904 Covariance Proportion 0.9920963000002000001000000-1000009092949698YF0002040608?2 S.E.
五、存在的问题
(1)在论文的分析中,力求思路清晰,但掌握的软件技能不足以满足分析过程的需要,所以在论文中有重复使用某种操作的现象。
(2)在模型预测时,由于样本选取的是小样本,仅为年度数据,不包括月度数据,所以我们认为有必要进行内插预测,以备对月度数据进行拟合;另外,在外推预测时,2008年数据的选取难免有误,所以预测的精度不高。
参考文献:
(1)肖红叶 周国富 《国民经济核算概论》 中国财政经济出版社 2004年版(2)庞皓 《计量经济学》 西南财经大学出版社 2007年版 (3)中华人民共和国国家统计局 《中国统计年鉴-2008》 2008年版
因篇幅问题不能全部显示,请点此查看更多更全内容