毕业设计(论文)
含Si3%-8%的Al-Si合金表面张力及组织的研究
学 生 姓 名 王培鑫 学 号 08070220 专 业 班 级 冶金(2)班 指 导 教 师 张胜全 提 交 日 期 2012-6
兰州理工大学技术工程学院
摘 要
表面张力是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界面上的张力。液态合金表面张力是液态金属的重要参数之一,它是晶体生长、凝固过程模拟和铸造合金品质预测的关键因素,高温熔体表面现象在冶金、化工、熔盐和材料科学等领域十分普遍。目前测量表面张力的方法有静态法和动态法。根据实验条件和各种方法的特点,应用静滴法原理采用封闭管式炉两端通入氮气保护和金不被氧化的办法测出铝硅合金的表面张力,结合合金相图及硬度综合分析得出:铋即能细化铝合金组织又能够降低合金表面张力。硅对合金组织细化和表面张力降低效果不明显。组织细化和硅含量增加使铝合金硬度增加。
关键字:表面张力,铝硅合金,组织性能
I
ABSTRACT
The surface tension is the tension of the liquid surface layer along the surface of molecular attraction is not balanced in any of the interface. The surface tension of the liquid alloy is one of the important parameters of the liquid metal, it is crystal growth, solidification simulation and a key factor in casting alloy quality forecast, high-temperature melt surface phenomenon is very common in areas such as metallurgy, chemicals, molten salt, and materials science. Static method and dynamic method for measuring surface tension. Under the experimental conditions and the characteristics of a variety of methods, application of intravenous infusion of the principle of the closed tube furnace at both ends into the protection of nitrogen and gold is not oxidized way to measure the surface tension of Al-Si alloy, combined with the alloy phase diagram and hardness analysis obtained: bismuth can refine aluminum alloy to reduce the surface tension. Silicon alloy microstructure refinement and surface tension reducing effect is not obvious. Microstructure refinement and silicon content aluminum alloy hardness increase.
KEY WORDS:Surface tension,Al-Si alloys, microstructure and properties
II
目 录
摘要 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„Ⅰ ABSTRATE „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„Ⅱ 1文献综述„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 1.1引言„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1
1.2表面张力概述„„„„„„„„„„„„„„„„„„„„„„„„„1 1.3测定高温熔体常用方法„„„„„„„„„„„„„„„„„„„„„2 1.3.1动态法 „„„„„„„„„„„„„„„„„„„„„„„„„2 1.3.2静态法 „„„„„„„„„„„„„„„„„„„„„„„„„2 1.3.2.1最大气泡法 „„„„„„„„„„„„„„„„„„„„„„2 1.3.2.2拉筒法 „„„„„„„„„„„„„„„„„„„„„„„„3 1.3.2.3滴外形法 „„„„„„„„„„„„„„„„„„„„„„„5 1.3.2.4毛细管上升法 „„„„„„„„„„„„„„„„„„„„„7 1.4表面张力在各领域中的重要性 „„„„„„„„„„„„„„„„„8 1.4.1表面张力在铸造中的作用 „„„„„„„„„„„„„„„„„8 1.4.2表面张力在熔盐中的体现 „„„„„„„„„„„„„„„„„8 1.4.3表面张力在高温熔体中的体现 „„„„„„„„„„„„„„„8 1.4.4表面张力在高表面能固体中的体现 „„„„„„„„„„„„„8 1.4.5表面张力在液态金属中的体现 „„„„„„„„„„„„„„„9 1.5国内外研究现状„„„„„„„„„„„„„„„„„„„„„„„„9 1.5.1国内动态 „„„„„„„„„„„„„„„„„„„„„„„„9 1.5.2国外动态 „„„„„„„„„„„„„„„„„„„„„„„„10 1.6铝合金的分类﹑性能及用途„„„„„„„„„„„„„„„„„„„10 1.6.1铝合金的分类与标示 „„„„„„„„„„„„„„„„„„„10 1.6.2铝合金的用途 „„„„„„„„„„„„„„„„„„„„„„11 1.6.3铝合金的用途 „„„„„„„„„„„„„„„„„„„„„„11 1.7金属元素对合金组织性能的影响„„„„„„„„„„„„„„„„„11 1.7.1铋对铝硅合金稳定性的影响 „„„„„„„„„„„„„„„„11 1.7.2铋对铝硅合金耐磨性的影响 „„„„„„„„„„„„„„„„12
III
1.7.3铋对铝硅合金组织的影响 „„„„„„„„„„„„„„„„„12 1.7.4铋对锌铝合金性能的影响 „„„„„„„„„„„„„„„„„12 1.8展望„„„„„„„„„„„„„„„„„„„„„„„„„„„„„12 2实验过程„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„13
2.1实验准备„„„„„„„„„„„„„„„„„„„„„„„„„„„13 2.1.1实验仪器 „„„„„„„„„„„„„„„„„„„„„„„„13 2.1.2主要设备简介 „„„„„„„„„„„„„„„„„„„„„„13
2.1.3实验材料 „„„„„„„„„„„„„„„„„„„„„„„„14
2.2实验流程„„„„„„„„„„„„„„„„„„„„„„„„„„„14 2.2.1实验流程 „„„„„„„„„„„„„„„„„„„„„„„„14 2.2.2实验装置图 „„„„„„„„„„„„„„„„„„„„„„„14 2.2.3实验过程介绍 „„„„„„„„„„„„„„„„„„„„„„14 3实验结果及讨论„„„„„„„„„„„„„„„„„„„„„„„„„„„16 3.1实验原理„„„„„„„„„„„„„„„„„„„„„„„„„„„16
3.2实验照片的处理方法„„„„„„„„„„„„„„„„„„„„„„16
3.2.1绘制与铝合金熔滴外形一致的椭圆曲线 „„„„„„„„„„„16 3.2.2铝合金熔滴水平截面特征数值和体积的获取 „„„„„„„„„17
3.2.3电脑处理铝合金熔滴照片实况记录 „„„„„„„„„„„„„18
3.3实验结果及分析„„„„„„„„„„„„„„„„„„„„„„„„19 3.3.1铝合金金相分析 „„„„„„„„„„„„„„„„„„„„„19 3.3.2铝合金硬度分析 „„„„„„„„„„„„„„„„„„„„„22
3.3.3铝合金表面张力分析 „„„„„„„„„„„„„„„„„„„23 4结论„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„25 参考文献 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„26 外文文献 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„28 中文翻译 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„42 致谢 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„57
IV
1文献综述
1.1引言
表面张力就是界面张力,通常将物体表面单位长度作用的力称为表面张力,它是合金熔化、熔体处理、凝固等过程中气相和固相、气相和液相、固相和液相的重要物理性质参数之一,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。由于表面张力的作用,液体表面总是向着其表面积最小的方向缩小,如果液面是平面,表面张力就在这个平面上,如果液面是曲面表面张力就在这个曲面的切面上。通常,由于环境的不同,处于界面的分子与处于相本体内的分子所受力是不同的,表面张力的大小和液体的温度和界面两相物质的性质有关系,一般表面张力随温度升高而降低,因为温度升高,分子热运动加剧,液体分子之间距离增大,相互吸引力将减小,所以表面张力也要相应的减小,到达临界温度时,表面张力减小到零。
铝合金为传统的金属材料,由于其密度小,强度高等特点,广泛应用航空、航天、汽车、机械等行业。近年来许多国家在Al-Si合金中加入可与Al形成偏晶转变的元素Bi用以提高A1-Si合金的耐磨性、尺寸稳定性、自润滑性、抗咬合性已成为改善高硅铝合金综合使用性能的有效途径。国外对A1-Bi偏晶合金及Al-Si-Bi多元合金的研究表明,Bi是一种良好的自润滑元素,可提供低的摩擦系数和高的抗咬合负载。Bi在基体中弥散分布可形成较强韧的油膜,提高合金的耐磨性。Bi在凝固过程中的膨胀可补偿合金的收缩,使合金获得良好的尺寸稳定性,Bi可有效的改善高硅铝合金的切削性能。由此可以看出,含硅、铋等元素的铝合金研究及应用将继续得到发展。
[2][1]
1.2表面张力概述
熔体的表面张力是熔体一项重要的物理特性,它不仅是金属内部结构的表征而且对形成物体的表面质量会产生重要影响,如铁水表面张力在一定条件下与合金凝固后的石墨形态有密切关系。所以,研究液态熔体表面张力对于熔体之间发生的反应和分离起着主导作用,也是研究熔体界面反应动力学的基础。
多相体系中相之间存在着界面,习惯上人们仅将气-固,气-液界面称为表面。从微观上讲,表面张力是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界
1
[3]
线上的张力。将水分散成雾滴,即扩大其表面,有许多内部水分子移到表面,就必须克服这种力对体系做功—称这种功为表面功。显然这样的分散体系便储存着较多的表面能。
(1)表面张力的方向和液面相切并和两部分的分界线相互垂直,如果液面是平面,表面张力就在这个平面上。如果液面是曲面表面张力就在这个曲面的切面上。 (2)表面张力是分子力的一种表现。它发生在液体和气体接触时的边界部分,是由于表面层的液体分子处于特殊情况决定的。液体内部的分子和分子间几乎是紧挨着的,分子间经常保持平衡距离,稍远一些就相吸,稍近一些就相斥,这就决定了液体分子不像气体分子那样可以无限扩散,而只能在平衡位置附近振动和旋转。在液体表面附近的分子由于显著受到液体内侧分子的作用受力不均,使速度较大的分子很容易冲出液面,成为蒸汽,结果在液体表面层跟气体接触的液体薄层的分子分布比内部分子分布得稀疏。相对于液体内部分子的分布来说,它们处在特殊的情况中,表面层分子间的斥力随它们彼此间的距离增大而减小,在这个特殊层中分子间的引力作用占优势。
(3)表面张力F的大小跟分界线MN的长度成正比。可写成F=σL或σ=F/L比值σ叫做表面张力系数,它的单位常用dyn/cm。在数值上表面张力系数就等于液体表面相邻两部分间单位长度的相互牵引力。
1.3测定表面张力常用方法
表面张力的测量方法很多,总体上可分为动态法和静态法两类。动态法是以测量决定某一过程特征的数值来计算表面张力,主要有振荡射流法。静态法测量表面张力是根据测定液体某一状态下的某些特征数值来计算得到表面张力。主要的方法有毛细管上升法、旋滴法、滴重法、最大气泡法、拉筒法、插入法、液滴外形法(包括静滴法和悬滴法) 和电磁悬浮法等
[7,8]
[6]
[4]
[5]
。
1.3.1动态法
振荡射流法是液流在椭圆形管口喷出时,射流可作周期性振动,形成一连串的波形,测定的时间范围可低达1毫秒左右。波形的产生是由于液体表面张力有使液流由椭圆形变为圆形的倾向和射流惯性力的相互作用,通过射流动表面张力公式及自射流波长和射流速度测得表面张力与表面老化时间的对应关系。
1.3.2静态法
1.3.2.1最大气泡法
2
最大气泡法测量表面张力应用比较广泛,但是测量精度较难控制。该方法可用于测量熔融金属、窑炉中的熔体等不易接近或需远距离操作的液体表面张力及测量不同深度的鼓泡压力,还可以用来测量熔体的密度。但是该方法对实验设备的依赖比较大,而且由于最大气泡法处理的是一种非常极限情况,只有在毛细管很细时才行,要求 r/a< 0.05 ( r是毛细管半径,a 是毛细常数)。当△p(毛细管内外压强差)达极值时,气泡的形状如果偏离半球形会引起很大的误差。同时,由于出泡速度快,不能观察熔体界面变化情况。
最大气泡法测量液体表面张力的原理如图1.1所示:
图1. 最大气泡法原理图
在实验过程中,控制吹入气体的速度很难,不断生成的气泡容易对生成的液滴面平衡进行干扰;而且插入的毛细管端面光洁程度以及和熔体的浸润性等界面效应都对测试气泡形成有很大影响。这些问题是最大气泡法测量表面张力时难以克服的 也就约束了该方法的进一步发展。
在密度为的液体中插入直径为2r的毛细管,插入深度为h1。当吹出气泡的直径与毛细管内径相等,即气泡为半球状时泡内压力为最大。根据拉普拉斯公式此最大压力可用式(3)计算。
Pm=h1gρ+
2 (3) r ----------液体表面张力 -------------液体密度 1.3.2.2拉筒法
当垂直的金属板、垂直的圆筒或水平的金属环与液体表面接触时,液体的表面
3
张力对它们有向下的拉力,拉筒法就是通过测量这个拉力和相关参数来计算表面张力的。实际中使用较多的是测量当处于液体表面上的金属环或圆筒被拉离液体表面时的最大拉力F。
Wilhelmy 测量了吊片从液面拉脱时的最大拉力,故也称为吊片法。Dognan和Abribat改进了该方法,用打毛的铂片测量当吊片的底边平行液面并刚好接触液面时的拉力。Timberg和Sondhauss使用一圆环水平接触液面,测量将圆环拉离液面过程中的最大拉力,该法也称为脱环法。DuNouy 第一次使用扭力天平来测量此最大拉力。 拉筒法的实验原理如图1.2所示:
[9]
图2.拉筒法原理图
许多学者对校正因子f 进行了较全面的研究,制定了相关的表格,通过适当校正,可以较满意地对纯液体的表面张力进行测量,而且实验设备简单、操作方便和不需要液体密度值,就可以得出表面张力值。但是,当液体或溶液含有表面活性成分时,存在较大的测量误差。
如图2所示,水平放置的金属环从液面上被拉起时,被测液体也被提起,液体对拉环的作用力随之增大,在液体即将脱离金属环的瞬间拉力达到最大。不难理解向上的总拉力减去拉环重量将与被拉起的环形液柱重量相等,同时也与环内外的表面张力之和相等,即:
F—W=mg=2r+2﹙R + 2r) (4)
FW (5)
4Rr 式中 F ------最大拉力 W ------拉环重量
4
实际检测中常常采用较粗的高熔点金属线制作半径较小的金属环,以免发生变形。另外,可采用高精密数据采集系统测定拉环最大拉力,从而获得精密计算结果。应注意的问题是被拉环所拉起的液环并非真正的圆柱形,按式(5)计算表面张力将有一定误差,因此要进行必要的校正,校正因子可通过一定数量的实验获得。通过适当校正,可以较满意的对纯液体的表面张力进行测量,而且实验设备简单、操作方便,不需要液体密度值就可以得出表面张力。但是,当液体或溶液含有表面活性成分时,存在较大的测量误差。 1.3.2.3滴外形法
滴外形法,顾名思义就是根据液滴的外形来确定表面张力和接触角的方法。该法试样用量少、设备简单、操作方便,可以观察到表面张力随时间的变化。特别是近20年应用现代数字化技术使滴外形法取得了很大的发展,备受人们的重视。滴外形法包括悬滴法(Pendant drop method)和静滴法(Sessile drop method)。两者测量表面张力的原理相似,以静滴法为例说明其基本原理和发展过程。静滴法是根据在水平垫片上自然形成的液滴形状来计算表面张力。 静滴法原理图如图1.3所示:
图3.静滴法原理图
座于水平垫片上平衡状态下的液滴形状如图3所示。根据物理学的拉普拉斯方程,液滴形状与液滴表面张力及密度之间的关系可用式(6)表述:
12 P0abgz (6)
R1R2 式中 ---------液滴表面张力
5
R1,R2------液滴主曲率半径 PO-- -------顶点O处的静压力 a,b----液相和气相密度 g----------重力加速度
z--以液滴顶点为原点,液滴表面上任意点P的垂直坐标 在液滴顶点O处R1= R2=b,P0=
2,代入式(6)得: b (
112)= +(a-b)gz (7) R1R2bP点的曲率半径R2可用其水平坐标X和过P点的法线PO’与对称轴的夹角来表示,,即R2=
x代入式(7)则有: sin ( 令
1sin2+)=+(a-b)gz (8) R1xbab2gb,并称其为形状校正因子,则有下式: 1sinz2 (9) R1bxbb
式中 R1------液滴表面上P点处的曲率半径 b------液滴顶点O处的曲率半径
------过P点的法线PO’与对称轴的夹角
X------以O点为原点的液滴表面上P点的水平坐标
xzx计算与不同和值对应的、和值,并制成专用计算表,实际测量时,
bbz拍照液滴影像后,测得=90°时的x和z值。利用专用计算表
[10]
,由=90°时
xxz的值,查出对应的值,再查出=90°时与值对应的、值。据此计算出bzbb值,最后将求得的和b值代入下式:
ab2gb,即可计算出值。 (10) 6
采用上述计算方法算出表面张力,不难看出,保持液滴的对称性和稳定性是液滴法准确测量表面张力的前提。为此必须严格控制垫片的水平位置和精选垫片的材质。此外,为保证液滴影像的真实性,选择合适的镜头和排除光学上的干扰因素以及选用细粒乳胶底片也非常必要。近年来,已有采用双坐标读数显微镜和X光照相技术替代传统光学照相的实例。由于可以克服诸多光学干扰因素,故可大大提高静滴照片的清晰度和保真度,从而提高了测试精度。 1.3.2.4毛细管上升法
毛细管上升法
[11]
是把一只毛细管插入液体中,液体就会沿毛细管上升。当毛细
管内外的液体达到平衡后,液体不再上升。依据毛细管内液体上升的高度,可以计算出被测液体的表面张力,故称毛细管上升法。 毛细管上升法的基本原理如图4所示:
图4.毛细管上升法原理图
凹形液面对液体的向上拉力可用式(11)表示。管内液体的重量用式(12)表示。
F12rcos (11) W = rhg+mg (12) 式中 -----液体密度
m-----高度h以上部分液体的质量 平衡状态下F1= W,即2rcos=rhg+mg 则
22 rhgmg (13) 2cos2cos7
事实上,当毛细管半径很小时,mg也可用于忽略不计,此时式(13)则可以写成下
rhg式: (14)
2cos对于与毛细管完全润湿(=0)的液体来说,式(12)又可以简化为:
rhg (15) 2由于r、、g均为定值,只要精确测得毛细管上升高度,即可方便地求出表面张力。如果被测液体与毛细管不润湿,则毛细管内液面呈凸形,管内液面高度将低于外部液面高度,此时要测量的是管内液面下降高度。
1.4表面张力在各领域中的重要性
1.4.1表面张力在铸造中的作用
表面张力通常在大体积系统中显示不出它的作用,但是在小体积系统,特别在显微系统中作用会更大。在铸造过程中,砂粒之间的毛细管直径能够小到0.001mm。表面是曲面时,表面张力会使曲面两侧产生压力差。铸造时,一般砂型和金属液之间是凸面。实际压力大于金属液进入毛细管产生粘砂临界压力时会粘砂
[12]
。
1.4.2表面张力在熔盐中的体现
在熔盐领域,用熔融盐作为特殊熔剂和电解质进行熔盐电解与电镀的研究也十分活跃。例如,熔盐电解制备氟气与轻金属,熔盐电解制备高熔点金属、稀土金属和合金,以熔盐为电解质制备特殊无机材料、熔盐电池、燃料电池及各种表面镀层现象的研究等,都涉及到各相的表面性质和相间表面的相互作用。
1.4.3表面张力在高温熔体中的体现
高温熔体之间的反应一般都属多相反应体系,各相的表面性质十分重要。表面现象的研究是研究钢铁冶金工艺的基础。例如,钢铁生产中钢、渣和反应气体大面积接触,脱碳反应的气泡成核、生长过程,冶金渣的乳化成渣过程,钢液吸氮、吸硫反应,二次精炼工艺中的夹杂物成核生长过程,还有高温反应过程中耐火材料的侵蚀等现象,都是多相表面相互作用的过程。对这些表面现象开展研究,将对炼钢过程有着重要的指导意义。
1.4.4表面张力在高表面能固体中的体现
高表面能固体是指表面张力大于100mJ.m的固体
2[13]
,如陶瓷、金属及其氧化
物等。由于金属和陶瓷的润湿性与金属基复合材料的开发,硬质合金和涂层材料的生产,金属与陶瓷的焊接离等密切相关。由于固体表面的原子失去了流动性,通过
8
试验直接测量其表面张力目前存在一定的困难。可见,获取固体材料的表面张力数据具有一定的意义。
1.4.5表面张力在液态金属中的体现
表面张力是液态金属的重要参数之一,它是晶体生长、凝固过程模拟和铸造合金品质预测的关键因素,特别是钎焊料的表面张力与其润湿性、铺展性有直接关系,是需定量分析的重要指标。
1.5国内外研究现状
1.5.1国内动态
电磁悬浮法是近年来发明的一种新的表面张力测量方法,特别是随着空间技术和微重力科学的发展,为了进一步完善其方法在微重力落塔内进行了硅液表面张力的测量
[14]
。在微重力环境下,由重力作用引起的沉降、浮力、自然对流和静压梯度
等因素基本上消失,热传递和溶质传递过程主要受扩散和表面张力梯度流控制,凡是与流体相关的物理化学过程都与重力场存在下有着显著差异。许多重要现象和规律往往与气-液界面(表面)或液-液界面的特性密切相关。
电磁悬浮法是一种无需与容器接触的表面张力的测量方法,其原理是将实验样品放在高频变换磁场内,样品在变化的磁场中由于洛伦兹力的作用熔化并悬浮在有磁场作用的空间中,液滴的形状由高速摄像机摄录下来,测量得到的液滴振动频谱经过傅立叶变换计算得到液滴的表面张力。计算时只需要知道液滴质量,而不需要测量该温度下的密度大小。但是,由熔化液滴振动频谱推算液滴表面张力大小的方法是在以液滴为球体的前提下进行,实际上由于振动时液滴变形偏离球形造成较大的误差。同时,由于重力和磁力作用对液滴振动频谱本身产生影响,也造成较多的误差,而且,只有当液滴电阻系数足够小的情况下,熔化样品液滴才可能悬浮在磁场中,因此,在地面上测量受到一定的。如果消除重力作用的影响,即在微重力条件下,精确度可以大大提高。
目前液态合金表面张力测量已有两种新方法获得初步应用,它们是“一维表面波光栅衍射法”和“气泡幅频当量法”。“一维表面波光栅衍射法”由西北工业大学杨永币等人提出
[15]
,该方法从流体力学方程式出发,研究表面张力在波传播过程
中所起的作用,推导出液态金属表面张力与表面波波长之间的关系式,通过测定波传播过程中的相关信息参数求解表面张力。“气泡幅频当量法”是哈尔滨理工大学李大勇等人提出的一种新方法。该方法的基础是气泡最大压力法,但它将静态测量
9
变为动态测量后,不仅提高了测试速度,更重要的是放宽了测试条件,使其成为一种真正意义上的炉前快速检测方法
[16,17]
。该方法以固定时间内在被测液体中形成气
泡的个数、泡内压力值及液体温度为信息参数,通过计算求出当量表面张力,求解公式的基本形式如下所示:
=aN+bP+c+dT+e (17) 式中 N------气泡个数 P-----泡内压差平均值
----毛细管内径与标准管内径之差 T-------被测金属液温度
a,b,c,d,e-----由合金种类决定的系数
1.5.2国外动态
由K.Zhou等人通过对高温液体表面的毛细波的振幅R的测量计算出液体的表面张力
[18]
,当液体达到平衡后液滴会呈椭球形,其表面存在热激发出的毛细波,这
些波的波长和振幅都很小,对于入射到液体表面的光线就像移动的光栅,会使入射光发生布里渊散射。表面波的性质与液体的表面张力有关,液体的表面张力与液滴的质量和毛细波的振幅有关。表面张力计算公式如下: 32 =mR (18)
8到目前为止,已经有很多人对高温液体表面张力的测量进行了相关的研究,并不断的改进工艺,但大部分都是测量液体的静态参数来计算液体的表面张力,近几年陆续有人通过测量液体的动态参数来计算液体的表面张力。由于高温熔体物性测量成本高、实验难度大很多学者提出了理论模型对熔体物性进行预测计算
[20,21]
[19]
。如
实验数据回归计算模型,以理论基础提出的半经验半理论模型,还有用统计模式识别的方法对熔体表面张力进行评估和预报。
1.6铝合金的分类﹑性能及用途
1.6.1铝合金的分类与标示
根据铝合金的成分、组织和工艺特点,可以将其分为铸造铝合金与变形铝合金两大类。
变形铝合金是将铝合金铸锭通过压力加工(轧制、挤压、模锻等)制成半成品或者模锻件,所以要求有良好的塑性变形能力。变形铝合金按照性能特点和用途分
10
为防锈铝、硬铝、超硬铝和锻铝四种。分别以“LF”、“LY”、“LC”、“LD”位号牌表示。
铸造铝合金则是将熔融的合金直接浇铸成形状复杂或薄壁的成形件,所以要求合金具有良好的铸造流动性。铸造铝合金按照加入的主要合金元素的不同,分为Al-Si系﹑Al-Cu系﹑Al-Mg系﹑Al-Zn系四种合金。合金牌号用“ZL”后面跟三位数字表示。第一位数字表示合金系列、1为Al-Si系,2为Al-Cu系,3为Al-Mg系,4为Al-Zn系。第二﹑三位表示合金的顺序号
[22]
。
1.6.2铝合金的性能[23]
简单铝硅合金:铸造性能良好,不能热处理强化,力学性能较低。 铝铜铸造合金:耐热性好,铸造性能与抗蚀性差。 铝镁铸造合金:力学性能高,抗腐蚀性好。 铝锌铸造合金:能自动淬火,宜于压铸。 铝稀土铸造合金:耐热性能高。 硬铝:力学性能高。 超硬铝:室温强度最高。
防锈铝:抗蚀性、压力加工性与焊接性能好,但强度较低。
1.6.3铝合金的用途[24]
铝合金在国民经济及国防建设中占很大的比重,占整个有色金属领域三分之一以上。铝合金具有密度低、强度高、耐腐蚀、导电导热性好、可焊接以及加工性能好等特点,运用范围仅次于钢铁,成为第二大金属。由于轻质的需要,铝合金一直是航空航天飞行器的主要结构材料,主要用于飞机蒙皮及舱体等部位。铝及铝合金还广泛运用于汽车、高速列车、地铁车辆、舰艇等交通运载工具等。
1.7金属元素对合金组织性能的影响
1.7.1铋对铝硅合金稳定性的影响
Bi在常温下的密度是9.8gcm3,在熔点附近密度是10.07gcm3,随温度升高密度增大,表现出随着温度的升高体积不断收缩。合金在偏晶转变时,首先析出固相Al,在其后共晶转变时,析出纯Al和纯Bi,Al-Bi在固态时几乎不互溶。Bi的密度较大,在重力作用下很容易发生Bi偏析,由于Si在Al中的溶解度远大于Bi在Al中的溶解度,偏聚的液滴基本为纯Bi相,当温度进一步降低时首先凝固析出的是Al、Si相,并形成空间网格,Bi相被分割在网格中,导致二次Bi相在网格的
11
空隙中析出
[25]
。受热过程中Bi在晶界间收缩,Al、Si晶粒膨胀,则Al-Si合金的
部分膨胀被Bi的收缩所补偿,这样使合金更稳定。
1.7.2铋对铝硅合金耐磨性的影响
Bi在基体中大部分以游离的高弥散状均匀分布,仅少量的Bi相颗粒较大。Bi的塑性好、硬度低,在合金中毯作隽软餐撵在滑动过程中Bi相发生变形,并向滑移面运动使其具有自润化作用,减小了磨擦系数,提高了抗咬合能力。磨损过程中基体中的铋相脱落后留下的空穴能储存溶滑油
[26]
,从而使合金具有耐磨行。
1.7.3铋对铝硅合金组织的影响
无Bi的共晶A1-Si合金组织中有块状的初生硅和粗大条状的共晶()相,加入少量Bi时,组织中的块状初晶硅得到了细化,数量明显减少,而共晶()相也由粗大条状变成了纤维状,并且得到了白色树枝状的相。随着Bi量的继续增加,块状初晶硅相已经完全消失,共晶体也由条状纤维状细纤维状,得到了一定的细化。可见Bi能有效的细化共晶体Al-Si合金中的初生硅和共晶()相
[27]
。
1.8展望
铝合金的研究一直备受关注,铝合金的研究也得到了相继的发展,其中发展较为迅速的是铝基复合材料。Al-Si基硅碳颗粒增强复合材料的研究和应用相对成熟,随着硅碳颗粒的加入,提高合金的性能,尤其是刚性和耐磨性,并以应用到航空、航天、汽车、机械等行业,具有广泛的应用前景。此外,一些新型特种功能的铝合金材料也处于研究应用阶段。因而研究Al-Si基铝合金复合材料高温熔体的表面张力极其重要的意义。
尽管现在已经有很多表面张力的测量方法了,但是其研究与应用也面临着严峻的挑战。高温熔体表面张力测量成本高, 实验难度大,目前常用的方法为最大气泡法和静滴法。随着材料科学的飞速发展、加工精度的提高、以及数字化模拟技术的进步,同时对合金综合性能和特种性能的要求不断提高,对于表面张力的测定精度的要求也越来越高。积极探询新的Al-Si基铝合金复合材料高温熔体表面张力测量方法,如何使传统的铝合金继续保持发展势头,如何开发研制新合金以满足各种需要,使铝合金这种传统的合金材料焕发新的光彩,是摆在我们面前的重要课题。
12
2 实验过程
2.1实验准备
2.1.1实验仪器
(1)坩锅炉;(2)管式炉;(3)坩锅钳;(4)半圆形钢垫;(5)石英玻璃片;(6)自制管式炉两端封闭设施;(7)氮气;(8)气体干燥塔;(9)模具;(10)高清摄像头;(11)电脑;(12)水平校正仪;(13)茶色玻璃;(14)钢锯。
2.1.2主要设备简介
(1)高温管式电炉和温度控制仪(图2.1)
天津市中环实验电路有限公司所制备的高温管式电炉,其型号为SK2-2·5-13D,功率:2.5KW,电源电压:220V,额定温度:1300℃。
天津市中环实验电路有限公司所制备的温度控制仪,其型号为KSW-4-1,测定温度范围为:(0~1500)℃,电压范围:(0~250)V,电流范围:(0~50)A。
图2.1高温管式电阻炉
(2)高温坩锅电炉
天津市中环实验电路有限公司所制备的高温坩埚电阻炉,其型号为SG2-8-16,额定功率:8KW,电源电压:220V,额定温度:1600℃。 (3)氮气罐(N2纯度=99.999%)
13
2.1.3实验材料
(1)铝锭;(2)单晶硅;(3)铋块;(4)工业盐酸;(5)氧化锌涂料;(6)橡胶管。
2.2实验流程
2.2.1实验流程
测定铝合金表面张力实验流程图
图2.2试验流程图
2.2.2实验装置图
图2.3测定表面张力的装置图
2.2.3实验过程介绍
14
(1)将合金制成10mm12mm的圆柱试样并称量。
(2)将清水清洗过的23mm*23mm*2.5mm的石英玻璃片放在直径与管式炉陶管内径一样并切去三分之二在中间切24mm*24mm*1mm的矩形坑钢垫的坑上。
(3)把与试样放在石英片正中一并送入管式炉中借助水平仪使试样水平,然后,固定成相系统拍照根据照片中试样的大小与实际大小确定成像系统的放大倍数。 (4)通入五分钟高纯氮气排除系统中的氧气其目的是防止铝合金表面被氧化。
(5)在氮气的保护下升温使样品熔化并通过成相系统随时监控合金的动向。 (6) 熔化后保持十分钟左右等铝合金熔滴轮廓稳定后调节光源拍出清晰的合金熔化后的照片。
(7)利用电脑计算出铝合金熔滴轮廓的特征值与体积。 (8)运用公式计算出合金的表面张力。 (9)拍出合金的金相图打出合金的硬度。 (10)综合分析添加元素硅铋对合金的综合影响。
15
3实验结果及讨论
3.1实验原理
综合上述内容提到的几种表面张力的测量方法都是测量高温熔体表面张力的常用方法,有关的理论和实验技术都相对较成熟。最大气泡法和拉筒法测量表面张力的实验设备简单、实验数据处理方便,但总体上来说实验误差较大。电磁悬浮法是一个特殊的方法,能够避免由于液滴接触基板和容器而带入的杂质,还可以测量过冷条件下的液滴表面张力,但由于实验条件过于苛刻而较难于实现,实验误差也比较大。只有在微重力条件下可以明显提高实验精度,但对于电阻系数大的熔体液滴尚无法测量。液滴外形法的实验精度较高,而且可以在线观察液滴熔化和界面接触熔损过程,但计算表面张力数据处理过程需要熔体密度值参数。测量方法的选择 应根据实验条件和实验精度要求等方面综合考虑加以取舍。结合实验条件综合考虑本实验运用滴外形法。
表面张力是液体基本特性,正因为液体有表面张力的存在,它使液体自发的向着表面积缩小的形状收缩,故而当液体处于平衡状态时,液滴会呈现椭球形。用滴外形法最后拍出铝合金熔融后的椭球外形运用公式(10)计算出铝合金的表面张力。
3.2实验照片的处理方法
3.2.1绘制与铝合金熔滴外形一致的椭圆曲线
将实验过程中拍摄的铝合金椭圆形熔滴水平截面影像(如图3.1)转换到AutoCAD图形窗上,且将影像设置为“后置”和“不可选择”状态。
图3.1铝合金椭圆形熔滴水平截面影像
打开正交功能画一条与液滴和薄板交界面重合的线段L,选定液滴最左侧的轮廓起点为A点,最右侧的轮廓起点为B点,画直线AB,取AB中点向上画出一条垂
16
直线C,选取直线C与液滴顶部的轮廓交点为0,左键点击工具栏绘“椭圆”功能的图标,依次点击A、B、0点,即绘出与液滴轮廓基本一致的椭圆(如图3.2)。然后通过具体操作,留下所绘制与液滴轮廓基本一致的椭圆曲线(如图3.3),图中H为椭圆曲线。
图3.2液滴轮廓一致的椭圆轮廓图像
图3.3 液滴轮廓基本一致的椭圆曲线图形
3.2.2铝合金熔滴水平截面特征数值和体积的获取
椭圆图形顶点0处曲率半径测定:打开对象捕捉功能,点击上方工具栏“窗口缩放”功能图标,如图3.3,对0处适当放大,点击工具栏绘“圆”功能图标,利用对象捕捉功能精确找到O点并点击,在命令行用键盘输入一个适当值并回车键确定,即以O点为圆心、半径为一定值绘制一个微小圆,记所绘微小圆与椭圆曲线图形H左右两侧各交一点。点击工具栏绘“圆”功能图标,在命令行内输入3P(即点确定一个圆的功能),回车键确认,依次点击左交点、O和右交点,绘制成以一个顶
17
点与椭圆顶点O点相重合的大圆,点击左侧工具栏标注“半径”的功能图标,再点击所绘的大圆,即显示该大圆的半径数值,该数值就可作为金属液滴顶点0处的曲率半径数b 。
等于90时值的确定:点击工具栏“线性”尺寸标注功能图标,点击图3.3
中B点,即显示椭圆中心至B点的水平距离尺寸值,此数值为x,同上操作,可测得椭圆中心至O点的垂直距离尺寸值,此值为z。根据和测得的x、z数值,将查得。
熔滴体积的确定:然后在Proe中画出切去L以下部分的真实液滴形状的三维图,点击其分析功能下的质量属性,鼠标点击三维图的坐标,即可以得出其液滴的体积大小进一步确定熔滴的密度。
图3.4 Proe获取熔滴体积
3.2.3电脑处理铝合金熔滴照片实况记录
由于数码相机获取的影像,经裁剪、放大和转换,在AutoCAD图形窗口的影像尺寸已发生变化,因此需将所绘图形转换为影像摄取时的液滴实际尺寸。具体操作为选中所绘图形,点击工具栏“缩放”功能图标,点击椭圆中心,在命令栏中用输入拍摄钢柱时的放大倍数,即将所绘图形缩小至影像摄取时的液滴实际尺寸。 特征值获取记录如图3.5所示
18
图3.5用CAD获取特征值
3.3实验结果及分析
3.3.1铝合金金相分析
目前铝及铝合金在生产过程中,检验项目主要包括化学成份、机械性能、表面质量、尺寸精度等,有些单位也把金相检验也列为必检项目,它对于提高产品质量,分析废品产生原因及研究新材料都是一个非常重要的方法。因此,为了更好的了解组织结构使其广泛得到运用,对含Si量为4%和含Si量为7%的A1-Si合金在含Bi量不同的情况下进行金相分析。
(a)4%Si-0%Bi (b)4%Si-1%Bi
19
(c)4%Si-2%Bi (d)4%Si-3%Bi
图1 含Si4%合金金相组织 ×200
(a)4%Si-0%Bi (b)4%Si-1%Bi
(c)4%Si-2%Bi (d)4%Si-3%Bi
图2 含Si4%合金金相组织 ×500
图1、2为不同Bi含量的4%亚共晶铝硅合金金相图。从金相图上看出,无Bi的共晶A1-Si合金组织中出现了粗大条状的固溶体和粗大针状共晶,如图1(a)所
20
示。加入Bi之后,从后面几组金相图看,组织中的固溶体有了球化趋势,并且固溶体更为明显,共晶相也变为细小颗粒状和细针状。可见Bi对亚共晶A1-Si合金组织中的共晶体有细化作用。
(a)7%Si-0%Bi (b)7%Si-1%Bi
(c)7%Si-2%Bi (d)7%Si-3%Bi
图3 含Si7%合金金相组织 ×200
(a)7%Si-0%Bi (b)7%Si-1%Bi
21
(c)7%Si-2%Bi (d)7%Si-3%Bi
图4 含Si7%合金金相组织 ×500
图3、4为不同Bi含量的7%亚共晶铝硅合金金相组织。从图3可以看出,加入1%Bi时,共晶相由粗大条状变成了纤维状,并且得到了白色树枝状的α相,得到了一定的细化,白色树枝状Al相分枝变得更为细小见图4(c)。可见Bi对共晶A1-Si合金组织中的共晶体有细化作用,随着Bi含量的增加,其细化作用逐渐变小。
3.3.2铝合金硬度分析
铝合金具有相当好的塑性和耐蚀性以及足够高的强度。因此,在交通运输、动力机械,特别在航空工业方面得到广泛的应用,运用范围仅次于钢铁,成为第二大金属。大部分的铝合金可以用热处理方法使其得到强化。所以使得A1-Si-Bi合金也同样得到广泛的应用。对含Si量为4%和含Si量为7%的A1-Si合金在含Bi量不同的情况下进行了硬度分析。
22
图5 含Si4%合金硬度分析
图6含Si7%合金硬度分析
由图5、图6可以看出,在含Si量为4%的Al-Si-Bi合金中,在含Bi量为2%时其硬度值降低了,分析其原因可能是浇注时Bi发生了偏析。在含Si量为7%的Al-Si-Bi合金中,在含Bi量为2%时硬度值达到最大,在含Bi量为0%到2%时硬度值随含量的增加而增加。比较含Si量为4%与含Si量为7%的硬度值变化可以得出Al-Si-Bi合金的硬度值主要的决定因素是Si,随着Si含量的增加其硬度值增加;Bi对其的影响主要是细化晶粒,含Bi量为3%和含Bi量为2%的硬度值接近,但有所降低,分析其出现的原因可能是在含Bi量为2%时对其细化作用已经达到极限,且可以由金相图看出含Bi量为2%,3%时其晶粒大小并无明显变化,但含Bi量从1%到2%时晶粒出现了明显的细化。所以硬度值会在含Bi量为1%与2%之间有很大程度的增加。
3.3.2铝硅合金表面张力分析
23
图7熔融铝硅合金
表面张力是液态合金的重要物性参数之一,铝合金表面张力与其变质处理效果、充型能力等质量参数密切相关,研究铝合金表面张力对于开发铝合金熔炼质量炉前的实时评价系统具有非常重要的实际意义。如图7所示用液滴外形法对熔融状态下含Si量为4%和7%的A1-Si合金在含Bi量不同的情况下进行表面张力的测定。
表一 铝合金表面张力值 (dyn/cm) 硅含 量% 表面张力 铋含量% 4 7 0 1 2 3 812.6 801.1 562.4 571.6 535.3 5.5 453.7 473.8 由表一可以看出,Si与Bi都是铝合金的表面活性元素(纯铝的表面张力为961),但相比之下,Bi对其表面张力的影响远大于Si。含Si量为4%与含Si量为7%的铝硅合金的表面张力比较接近,且与纯铝比较其下降值不多,但加入Bi后其表面张力骤降。在含Bi量为1%时下降幅度最大,随着含Bi量的增加,其表面张力值有所降低,但降低的幅度逐渐减小。比较相同含Bi量、不同含Si量的表面张力值,可以得出其表面张力值变化都很小,Si对其的影响几乎没有,再比较相同含Si量、不同含Bi量的表面张力值可以看出Bi对表面张力的大小起决定性作用。
本实验只从单方向的对熔融铝合金的图像进行了拍照,无法判断处于高温状态熔滴的微小变形;本实验是将试样预先放在管式炉中并随着管式炉一起加
24
热升温,虽然有高纯度的氮气作保护,但炉内的气体控制仍然比较困难。而氧是熔融铝合金的高表面活性物质,氧的少量存在就能引起表面张力的本质性降低。静滴法测表面张力时金属试样表面很容易与周围气体发生化学反应而受到污染,将试样放入管式炉之前用工业盐酸浸泡,以减小测量表面张力的误差。另外,由于静滴法本身的缺陷,实验的精度较大的依赖于实验者,获取的图片经过电脑软件(CAD,Proe)处理后精度虽有所提高,但仍然会对实验结果产生影响,所以本实验得出的数据有待进一步提高。
4实验结论
(1)Al-Si系列合金中一般含Si量为5%~13%(质量分数),属于亚共晶和共晶型合金,具有良好的铸造性能和力学性能,而且抗腐蚀性能高,密度小。 (2)固溶体-Al通常呈现枝晶状,因为晶体在各方向成长的速度不一样结果就形成了树枝状结晶。初晶硅晶体呈多边形,有的呈柱形、片状和花纹图案等。共晶硅常以粗大的长条状或针状出现。这就严重影响了合金的机械性能和加工性能,所以要细化组织。细化组织的目的在于提高合金的机械性能、改善物理性能和加工性能、降低热裂倾向。
(3)从金相图和硬度来说Bi元素含量的不同会不同程度细化铝合金组织,固溶体有球形发展趋势,共晶相从粗大条状变为针状和细小颗粒;Si的密度小硬度大随着含Si量的增加铝合金的硬度增加。这两方面的因素同时强化了铝合金硬度使铝合金能够承受一定的压力可被加工为特定的零件。另外,Si对铝合金组织的细化效果不明显。
(4)Si与Bi都是铝合金的表面活性元素但Bi对表面张力的影响远大于Si。随Bi含量的增加合金的表面张力随之下降。
25
参考文献
[1] 顾惕人等.表面化学[M].第二版,北京:科学出版社,1999,20 ~33. [2] 代云.无磨损的新型铝合金——DHT3[J].汽车之友,1997,(1):17~18. [3]范建峰.袁章福.柯家骏.高温熔体表面张力测量方法的进展.化学通报[N],2004,(11):802.
[4]于军胜.唐季安.化学通报[N],1997,60(11):11~15.
[5]王常珍.冶金物理化学研究方法[M].冶金工业出版社,2002,278~309. [6]田中敏之.原茂太. 金属[J],1999,69(7):629~636. [7]江 龙.胶体化学概论[M].北京:科学出版社,2002,23~25.
[8]陈秀梅.表面张力研究方法[D].中国科学院物理研究所学位论文,1999,19~27. [9]顾惕人等.表面化学[M].第二版,北京:科学出版社,1999,20~33. [10]王常珍.冶金物理化学研究方法[M].第三版,北京:冶金工业出版社. [11]李大勇等.液态金属表面张力快速电测方法[N].哈尔滨科技大学学报,1995,19(1):41~43
[12] 王仪玖.表面张力在铸造过程中的作用[Z].江西冶金,2002,22(2).
[13] 罗晓斌 .朱定一.乔 卫 .石丽敏.高表面能固体的润湿性实验及表面张力计 算[N].材料科学与工程学报,2008.
[14]H Fujii, T M atsumoto, K Nogi A cta M aterialia, 2000, 48: 2933~2939 [15]杨永正等.液体表面特性研究的新途径[J].半导体光电,1997,18(6):387~390 [16]李大勇等,液态金属表面张力快速电测方法[N].哈尔滨科技大学学报,
26
1995,19(1):41~43
[17]Li dayong and others, A new method and device for calculating graphite shape in cast iron in front of the furance[J]. International Journal of CastMetal Research, 1999,11(5):387~390
[18] K. Zhou,H.P. Wang,J. Chang,B. Wei,Surface tension measurement of metastable liquid Ti–Al–Nb alloys,Materials science and Processing.2011,(105)211~214
[19]J.W.Strutt(Lord Rayleigh),Proc.R.Soc.London 29(1979) [20]T Tanaka, Shara, SteelResearch,2001,72(12).439~445.
[21] T Tanaka, S Hara, Z Qiaoetal. Z. M etallkd , 2001,92 (11): 1242~1246. [22]王健安.金属学与热处理[M].北京:机械工业出版社,1980. [23]戴起勋.金属材料学[M].北京:化学工业出版社,2005.
[24]刘静安.合金型材生产实用技术[J].重庆:重庆国际资讯中心出版社,1995. [25]夏兰廷.蔺虹宾.李桂玲.Bi对Al-Si活塞合金性能和组织的影响[M].特种铸造及有色合金,2008,(11).
[26]夏兰廷.朱宏喜.罗敏鸣.邹万凯.Bi对共晶过共晶Al-Si合金耐磨性能的影响[M].中国铸造装备与技术,2003,(5).
[27] 夏兰廷.朱宏喜.马云飞.Bi在高硅铝合金中的凝固特点及对组织的影响[M].铸造,2006, 55(11).
27
外文文献
Surface Tension of Liquid Fe–Ti Alloys at 1 823 K
Joonho LEE,1) Akihito KIYOSE,2),3) Masayuki TANAKA,2) and Toshihiro TANAKA2)
1) Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713 Korea. E-mail: joonholee@korea.ac.kr 2) Department of Materials Science and Processing, Graduate School of Engineering,Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan. 3) Steelmaking R&D Division, Environment & Process Technology Center, Technical Development Bureau, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511 Japan.
(Received on August 29, 2005; accepted on January 13, 2006) Surface tension of liquid Fe–Ti alloys has been determined by using the constrained drop method at 1823 K in Ar–10%H2 gas atmosphere. It was found that the surface tension of liquid Fe–Ti alloy decreases slightly with increasing titanium content. In addition, the surface tension of Fe–Ti alloy was also obtained by a theoretical calculation. It was found that the experimental results became slightly lower than the calculated results with increasing titanium content. This paper also discusses the possible
28
reasons for the slight decrease in the surface tension with increasing the titanium content.
KEY WORDS: surface tension; liquid Fe–Ti alloys; constrained drop method.
1. Introduction
Titanium is added into steel to increase toughness of the heat affected zone of a thick steel plate. Titanium forms titanium oxide (TiOx), on which MnS and TiN is precipitated to be used as a nucleation site of the →
phase transformation inside the grain.1) This titanium is generally added
during refining process of molten steel. Surface tension of liquid iron containing titanium and its interfacial tension to titanium oxide are very important thermophysical properties to the understanding of the nucleation and the growth of titanium oxide inclusions as well as the behavior of gas bubbles or titanium oxide inclusions in front of an advancing steel solidification front.2–4) Basically, the estimation of the interfacial tension requires the knowledge of the accurate surface tension of liquid steel and solid oxide as well as the contact angle between them according to Young’s equation. Therefore, the surface tension data of liquid Fe–Ti alloys are very essential to develop titanium added steels.
Despite the importance of the surface tension of liquid Fe –Ti alloy, only few investigations have been performed due to the difficulties of experiments such as reactions with atmosphere or substrates. Smirnov5) firstly investigated the surface tension of liquid iron containing 0–2.12 mass% Ti and found that the surface tension slightly increased with increasing titanium content. Kishimoto et al.6) found that the surface tension of liquid Fe–Ti alloys decreases with increasing titanium content in the concentration region of 0–2.70 mass% Ti. They suggested that hydrogen used in their experiments might adsorb on the surface site of titanium, because titanium naturally has a lower electronegativity to form a hydrogenic compound easily, whereas not on the surface site of iron having a higher
29
electronegativity.6) Therefore, it was anticipated the adsorbed hydrogen atom decreased the surface tension by about 400 mN/m at most.In two sets of the previous experiments, however, the surface tension value for pure liquid iron was lowly estimated than the more reliable recent data (1 842( 44)7) mN/m at 1 823 K). It is considered that the samples used in the experiments might have been contaminated by surfaceactive impurities such as oxygen and sulfur, which may considerably lower the surface tension of liquid ironbased alloys.Recently, Yokoyama et al.8) examined the surface tension of liquid iron alloys containing 0–0.5 mass% Ti and found that the surface tension decreased when titanium content was lower than 0.1 mass%, but it slightly increased for the higher concentration region. They considered that the surface tension was decreased due to oxygen contamination as well as hydrogen adsorption. They examined the surface tension in argon atmosphere, and concluded that oxygen contamination is inevitable in their experiments. It is very remarkable that the reestimated surface tension of liquid iron by compensating for the oxygen contamination effect(FeFeO7490.[at%O]9)) became 1 852 mN/m,almost the same value as the measurements for pure iron by Lee et al.7) Applying the same rule to liquid Fe–Ti alloy, the surface tension was re-estimated to be 1 674 and 1 705 mN/m for the alloys containing 0.15 and 0.5 mass% Ti, respectively . These values are much lower than that of pure iron,which reason has not been clarified properly. Accordingly,it is considered that the surface tension of liquid Fe–Ti al-loys has not been properly estimated by experiments.
In the present work, the surface tension of liquid Fe–Ti alloys has been determined in the concentration region of 0.22–1.80 mass% Ti in Ar–10%H2 atmosphere at 1 823 K.In the experiments, we applied the constrained drop method, recently developed by the authors.7,10) This method considerably decreases the experimental scatter. For exam-ple, the experimental scatter of pure liquid iron has been reduced to 2.4% by employing the constrained dropmethod.7) Typical sessile drop method with the same exper-imental
30
apparatus for pure liquid iron yields experimental scatter as large as 6.8%.7)
In addition, in the present work the surface tension of Fe–Ti alloy was also obtained by a theoretical calculation, and compared with the experimental results in order to discuss possible reasons of changes in the surface tension with increasing the titanium content.
2. Experimental
2.1. Apparatus and Materials
In the present work, the surface tension was measured by using a graphite-heating-element furnace ( TMax=1973 K) with a high-resolution CCD camera (16361236 pixels) as shown in Fig. 1. A He–Ne laser rays ( 632.8 nm) was used to capture a much clearer image profile of the liquid metal drop. The temperature was measured with a Pt–30%Rh/Pt–6%Rh thermocouple set under the crucible. The temperature was controlled manually within 1 K. The samples used in the present study were prepared in a cold crucible furnace. Applying this technique, majority of inclusions can be removed from the samples, because large-scale inclusions are gathered on the bottom side of the samples.
31
Fig. 1. Schematic diagram of the experimental apparatus.
The chemical composition of each sample is shown in Table 1 . Total oxygen content before experiments was about 80–100 mass ppm, but after experiments it reduced to about 8–24 mass ppm. (Table 2 ) If the samples are in a state of equilibrium with Ti2O3 inclusions before experiments,most of oxygen in the samples might exist as oxide inclusions, because the equilibrium soluble oxygen content is less than 20 mass ppm in most cases. We will discuss this problem later. During experiments, oxygen partial pressure of the sample was controlled by the equilibrium between hydrogen and trace moisture in gas atmosphere, so that it is believed that oxygen as a state of oxide was removed by the reaction with hydrogen gas. In addition, since sulfur content was less than 3 mass ppm, it is considered that the surface tension values obtained in the present work have not been lowered by the contamination of surface-active element sulfur. After experiments, it was confirmed that the change in the composition of titanium was negligible.
Table 1. Chemical composition of the samples.
32
* total oxygen
Table 2. Oxygen content in the samples after experiments.
* It is considered that the soluble oxygen content was highly evaluated due to uncertainty of thermodynamics data such as interaction parameters.
2.2. Procedure
The sample metal was prepared as cylindrical pieces of 8 mm in diameter, andused after removing surface contaminants with a grit paper and washed in acetone using an ultrasonic cleaner. After the sample was placed in a specially designed alumina crucible7) at the center of the furnace, the reaction furnace was sealed and evacuated, and then a purified Ar–10%H2 gas mixture was introduced for 12 h. Then, the furnace was heated to the experimental temperature in 2–2.5 h. After the sample melted, the surface tension measurements started. The shape of a sample was investigated with a high-resolution CCD camera. Then, the surface tension of the liquid metal was calculated with a computer program. The surface tension of liquid Fe–Ti alloy gradually increased with time. In Fig. 2, a typical example of the surface tension change for the Fe–0.46 mass% Ti alloy is shown as a function of time. With increasing time, the surface tension gradually increases and reaches an equilibrium value. The higher the concentration
33
of titanium, the longer the time to reach the equilibrium value. As can be found in the following section, it may be related to the stronger affinity of oxygen to titanium rather than iron. The whole image processing sequences and experimental details are reported in our previous contribution.7
Fig. 2. Variation of the surface tension of liquid Fe–0.46 mass%Ti alloy with increasing time.
3. Results and Discussion
The surface tension of liquid Fe–Ti alloys in the concentration region of 0.22–1.80 mass% Ti was measured at 1823 K, and all measurements were plotted in Fig. 3. It is noteworthy that the surface tension slightly decreases with increasing the titanium concentration. In addition, the present results show higher values than the reported ones.5,6,8) As addressed before, it is considered that the samples used in the previous experiments might have been contaminated by surface-active impurities such as oxygen and sulfur.
34
Fig. 3. Surface tension of liquid Fe–Ti alloys at 1 823 K. Theoretically, the surface tension of liquid Fe–Ti alloys can be calculated by applying Butler’s model with available thermodynamic and thermo-physical data.11) Butler’s model is expressed by Eq. (1) for the Fe–Ti binary alloys.
s1Ex,sRT1NTiAlnGFebFeAFe1NTiFe,bbsGExFeT,NTiT,NTi
_sRTNTiEx,sEx,s1sbTilnGT,NGT,NTiTiTibTiATiNTiATi
where R is universal gas constant; T, is temperature; Nsi is the mole fraction of i in the surface; Nbi is the mole fraction of i in the bulk;
Gi Ex,s(T,Ns i ) is the partial excess free energy of i in the surface as a function of T and Nsi ; Gi Ex,b(T,Nbi ) is the partial excess free energy of i in the bulk as a function of T and Nbi . Ai is the molar surface area of component i (Ai1.091 · (6.02 · 1023)1/3 ·Vi 2/3, where Vi is the molar volume of the element i. The constant 1.091 is introduced on the hypotheses of the close-packed configuration in a monolayer.12)) The partial excess free energy in the surface is obtained using Eq. (2) assuming that the partial excess Gibbs energy in the bulk and the surface have the same concentration
35
dependence.
The constant b (0.83) is the value of pure metals determined from the bonding energy difference between the surface and the bulk, which is generally applied to alloys.14) Solving Eq. (1) by instituting the thermo-physical data and the excess free energy of liquid Fe–Ti alloys listed in Table 3, the surface tension is calculated as a function of the bulk concentration at 1 823 K.
Table 3. Thermodynamic and thermo-physical data for calculation.
The calculated surface tensions (solid line) are plotted in Fig. 4 together with the experimental results. There are slight differences between the calculations and the measurements, and this difference increases with increasing the titanium concentration (67 mN/m at most). In order to make the measurements and the calculation results accord with each other, the surface tension of liquid Ti should be 836 mN/m at 1 823 K, which is about half of the reported value in the state of under-cooling.15) Thus, it is considered that the experimental results in the present work has been lowly estimated due to some reasons.
36
Fig. 4. The calculated results of the surface tension and the surface Firstly, we may consider the changes of oxygen affinity to the surface of molten Fe–Ti alloys by increasing titanium concentration as a reason. Recently, Lee et al.18) found that the oxygen adsorption on liquid Fe–Cr alloys remarkably increased with increasing chromium content at constant oxygen partial pressure. They considered that alloying elements (in this case, chromium) having stronger affinity to oxygen than iron increased the oxygen adsorption. Similarly, it is likely that titanium of liquid Fe–Ti alloy reinforced the adsorption of oxygen on the surface. Chemically, the oxygen adsorbed on the metal surface can be equilibrated with the soluble
37
oxygen in the bulk metal. The soluble oxygen content is calculated by using the standard Gibbs energy change of the dissolution of titanium and oxygen in liquid iron.19,20)
where eTi/Ti, eO/Ti, eTi/O and eO/O are 0.043, 3.49, 1.15 and 0.20, respectively.14) The calculated soluble oxygen content in most samples (except the sample containing 1.8 mass% Ti) is as low as 7–15 mass ppm, which is very
lower level than those before experiments, but closer to those after experiments. (Table 2) During experiments, a strong reducing atmosphere was maintained by flowing Ar– H2 gas. Accordingly, the following reaction mechanism can be considered: 1) initially at the surface soluble oxygen is removed by the reaction with hydrogen gas, 2) a concentration gradient of oxygen in the sample or surface layer occurs and, Marangoni flow by local difference in surface tension might cause a mass transportation of oxygen from bulk to surface, and 3) successive dissolution of the titanium oxide (Ti2O3) in bulk is followed. In such a case, however, oxygen on the surface can have the same as or lower chemical potential than that of the oxygen in the bulk. Assuming that the oxygen contamination is the major reason for the lower surface tension in measurements, it is considered to be related to the strong affinity of titanium to oxygen. Thus, desorption of oxygen can be the rate-determining step. However, it is impossible to evaluate quantitatively the effect of oxygen on the surface tension of Fe–Ti alloys
38
at the moment.
Another possible reason is the adsorption of hydrogen on the surface as suggested by Kishimoto et al.6) In the present work, we investigated the change in surface tension of Fe– 0.91mass%Ti alloys during reduction by switching the atmosphere Ar–H2→Ar→Ar–H2. In Fig. 5, the surface tension change of the liquid Fe–Ti alloy due to the change in atmosphere is shown. It is found that when the gas atmosphere was switched from argon gas (open circles) to Ar–H2 gas mixture (solid circles), surface tension suddenly decreased by 50 mN/m. Initially, the surface tension increased with time, because the oxygen was removed by hydrogen. When the gas atmosphere was shifted into argon gas, oxygen cannot be removed further more and the surface tension maintains almost a constant value, whereas by re-introducing Ar–H2 gas mixture the surface tension suddenly decreased. After about 70 min, surface tension starts to re-increase because hydrogen reduces the oxygen in the surface again, and finally it reaches to the value shown in Fig. 3. In pure argon gas atmosphere, it was impossible to investigate the surface tension values as high as those in Ar–H2 gas mixture as reported by Yokoyama
et al.8) Probably, it is related to residual oxygen in the introducing argon gas. From the Butler’s model, it is found that without oxygen or hydrogen the surface concentration of titanium is almost the same as that of the bulk. (Fig. 4(b)) Consequently, it can be anticipated that the hydrogen adsorbs on the titanium site of the surface, and the hydrogen adsorption increases with increasing the concentration of titanium, qualitatively. On the other hand, in the presence of oxygen, once oxygen previously occupies the surface sites, the chance for hydrogen to adsorb on the metal surface will decrease, because oxygen would occupy both titanium and iron sites (or preferentially on the titanium sites). Then, the adsorption of hydrogen along with oxygen would show smaller effect on the surface tension decrease than that without oxygen, i.e., the surface tension at the point (b) in Fig. 5 would have stronger effect by hydrogen than the point (a) in Fig. 5. Namely, surface
39
tension of Fe– 0.91mass%Ti in a hypothetical condition of pure hydrogen atmosphere without oxygen may be decreased by more than 50 mN/m compared with the calculated values without oxygen and hydrogen. As found in Fig. 4, the difference in surface tension between the measurement and calculation for the sample of the Fe–1.8mass%Ti alloys is 67 mN/m. Based upon this, it seems that the hydrogen adsorption decreases the surface tension values with increasing the concentration of titanium in Ar–H2 atmosphere. In addition, it should be noted that even if hydrogen adsorption decreased the surface tension of liquid Fe–Ti alloys, the decrease in surface tension would not be so considerable as suggested by Kishimoto et al. (400 mN/m).4) It is considered that the reported values were lowly estimated due to both oxygen and hydrogen adsorption.
Fig. 5. Variation of the surface tension of liquid Fe–0.91 mass% Ti alloy with increasing time. During experiments, gas atmosphere was switched into Ar for 2 h. In the atmosphere of Ar gas (open circles), the surface tension maintains almost a constant value. Once the gas atmosphere returns to Ar–10%H2, the surface tension suddenly decreases by about 50 mN/m.
At the moment, however, it is very difficult to say which element dominantly affects the surface tension decrease in the present measurements (even though it is believed that the
effect of hydrogen adsorption
40
on the surface tension decrease is much stronger than oxygen in the present experimental condition), because the adsorption mechanism of hydrogen adsorption without oxygen was not investigated directly. In order to clarify the mechanism of the competitive adsorption of oxygen and hydrogen, additional experimental data and an acceptable adsorption model are anticipated. Nevertheless, in the present work, the surface tension of liquid Fe–Ti was determined by the constrained drop method more precisely, and it was confirmed that the surface tension of liquid Fe–Ti alloys shows much smaller dependence on the titanium content than the reported ones. 4. Conclusions
In the present study, the surface tension of liquid Fe–Ti alloys has been determined by using the constrained drop method at 1 823 K in an atmosphere of Ar–10%H2 gas mixture. It was found that the surface tension of liquid Fe–Ti
alloy slightly decreases with increasing titanium content. It is considered that the slight decrease in surface tension values with increasing the titanium content in the present study is due to the adsorption of oxygen and/or hydrogen on the surface at the titanium sites. However, even if hydrogen or oxygen adsorption decreases the surface tension of liquid Fe–Ti alloys, the decrease in surface tension would not be so considerable as suggested by previous researchers. Acknowledgement
This work was supported by ISIJ Research Promotion Grant and gratefully acknowledged. REFERENCES
1) J. Takamura and S. Mizoguchi: CAMP-ISIJ, 3 (1990), 276. 2) K. Mukai and W. Lin: Tetsu-to-Hagané, 80(1994), 527. 3) K. Mukai and W. Lin: Tetsu-to-Hagané, 80(1994), 533.
4) Y. Wang, M. Valdez and S. Sridar: Z. Metallkd. , 93(2002), 12.
41
5) L. A. Smirnov, S. I. Popel and B. V.Tsarevskii:Izv. VUZ. ChernayaMetall.3 (1965), 10.
6) M. Kishimoto, K. Mori and Y. Kawai: J.Jpn. Inst. Met. , 48(1984),413. 7) J. Lee, A. Kiyose, S. Nakatsuka, M. Nakamoto and T. Tanaka: ISIJInt. 44(2004), 1793.
8) T. Yokoyama, Y. Ueshima, K. Sasai, Y. Mizukami, H. Kakimi and M. Kato: Tetsu-to-Hagané,83(1997), 563.
9) B.J. Keene: Int. Mater. Rev., 33(1988), 1.
10) T.Tanaka, M. Nakamoto, R. Oguni, J. Lee and S.Hara:Z. Metallkd.95(2004), 818.
11) J.A.V.Butler: Proc.R. Soc.(London) A,135A(1932), 348.
12) C.H.P.Lupis: Chemical Thermodynamics of Materials, North-Holland, New-York, (1983), 403.
13) K.S.Yeum, R.Speiser and D.R.Poirier:Metall. Trans,20(19),693. 14) T. Tanaka, S.Hara, M.Ogawa and T. Ueda: Z.Metallkd.83(1998),368. 15) P. F. Paradis, T. Ishikawa and S.Yoda: Int.J.Thermophys . 23(2002),825. 16) T. Iida and R. I. L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, (1988), 71.
17) K. C. Hari Kumar, P. Wollants and L. Delaey: Calphad, 18(1994),223. 18) J. Lee, K. Yamamoto and K. Morita: Metall. Mater. Trans. B, 36B(2005), 241.
19) Steelmaking Data Source Book, The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking, Gordon and Breach Science Publishers, New York, (1988), 165.
20) E. T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, (1980), 22.
42
中文翻译
ISIJ研究所,硕士论文。46(2006)期,第4号,第471 - 467页
液态合金Fe-Ti的表面张力(1823 K)
Joonho LEE,1) Akihito KIYOSE,2),3) Masayuki TANAKA,2) and Toshihiro TANAKA2)
摘要:
Fe-Ti液体合金的表面张力通过使合金在1823 K并且在含10%氢气的亚气气氛中跌落的方法测出。结果表明,液体Fe-Ti表面张力随着钛含量增加慢慢降低。此外,Fe-Ti合金的表面张力也得到了理论估算。结果表明,实验结果随着钛含量的增加稍低于计算结果。本文还论述了表面张力随钛含量增加稍微降低的可能原因。
关键字:表面张力;液体Fe-Ti合金;约束下降法。
1.简介
钛加进钢是为了增加粗钢板的热韧性,在钛形成氧化钛的过程中MnS和TiN沉淀被认为是在颗粒中由→的一个相变点,这些钛通常在精炼钢水的过程中加入对于理解钛的氧化物的成核及生长和气体夹杂物的行为加钛的铁水的表面张力和它与氧化钛的界面张力都是非常重要的物理特性。基本上,界面张力的估计需要知识的准确钢液的表面张力和固体氧化物以及他们之间的接触角根据杨氏方程。因此,表面张力Fe-Ti合金液的数据是非常必要的对于开发钛补充道钢。
尽管铁钛液体和金的表面张力很重要但是在一些大气或者基片等较难的反应中很少体现出来。Smirnov第一个研究了含钛0.00%-2.12%的铁水的表面张力从中发现其表面张力随着钛含量的增加而增加。Kishimoto et al 发现铁钛合金的表面张力在含钛0%=2.70%的范围内钛集中的地方随着钛含量的增加而降低。他们建议氢用在实验中很可能吸附在钛的表面上.自然,因为钛具有较低的电负性,形成氢化合物很容易,而不是铁表面具有较高的电负性。因此,预计吸附氢原子减少最多约400mN/平方米的表面张力。对于以前的两种实验来说,纯铁液的表面张力值比现在数据所显示的稍低一点。据认为,在实验中使用的样本可能被表面活性杂质污染,如氧,硫,这可能大大降低液体的铁基合金的表面张力。近日,Yokoyama et al 检查铁液中含0-0.5%钛的合金表面张力时发现钛含量低于0.1%时其合金的表面张力下降,但,高浓度区略有增加。他们认为表面张力下降的原因是由于氧污染和吸氢
43
现象造成。他们在氩气气氛中研究表面张力并得出结论,在实验中氧污染是不可避免的。值得注意的是在补偿氧污染的情况下估算了铁水的表面张力为1852mN/m,尽管这个值Lee et al 所测纯铁的张力相同。采用同样的规则对含钛分别为0.15%和0.5%的铁钛合金再次测定其表面张力为1674和1705mN/m。这些值比纯铁的张力值低得多的原因还不清楚。因此,铁钛合金的表面张力值还没有通过实验正确的得到。从目前的情况看,含钛0.22-1.8%的铁钛液体合金的张力在1823K并且含10%氢气的氩气氛围中是可以确定的。在实验中,我们采用的约束沉降法有作者开发。这种方法大大降低了实验的分散度。例如,纯液态铁的实验分散一直用人约束降法降低到2.4%。典型静滴法具有相同的纯液态铁的实验仪器不过产生实验散大为正负6.8%。此外,在目前的工作就是通过理论计算Fe-Ti合金的表面张力,并与实验结果进行比较从而讨论随着钛含量的增加表面张力变化的原因。
2.实验
2.1.设备和材料
在目前的工作,表面张力测量的测定用带有高分辨率的CCD相机(16361×236像素)的石墨加热元件炉((Tmax=1973K)如图1.
图1.实验装置示意图
波长为632.8nm的氦氖激光光线被用来捕捉更清晰的液体金属下跌图像轮廓。
44
用PT-30%Rh/Pt-6%Rh热电偶测坩埚下部的温度。温度人为控制在正负一度的范围内。在本研究中所使用的样品,准备在冷坩埚炉中。这项技术的应用,大部分夹杂物可以从样本中除去,因为大型夹杂物聚集在样品底部。每个样品的化学成分如表1所示。实验前的总氧含量约为80-100PPM,但实验后,减少了约8-24的PPM。(见表2)在实验前如果样品在平衡状态夹杂Ti2O3,大部分样品中的氧气可能以氧化物的形式存在,平衡可溶性氧含量,因为在大多数情况下氧含量小于20 ppm的质量。稍后我们将讨论这个问题。在实验中,样品的氧分压是由氢和微量气体环境中的水分之间的平衡来控制,因此它被认为,作为一个氧化状态的氧气与氢气反应来消除。此外,由于硫含量小于3 ppm的质量,它被认为在目前的工作中获得的表面张力值没有被污染的表面活性元素硫降低。实验结束后,它被证实钛成分的变化是微不足道的。 表1.样品的化学成分
*总氧量
表2.实验后样品中的氧含量
*样品中可溶性氧含量被重视是由于某些不确定的参数,如热力学数据
2.2.程序
金属样品制备直径为8mm的圆筒件,后用砂纸去除表面污染物,并在使用丙酮超声波清洗机洗。样本被放置在一个专门设计的氧化铝坩埚炉中心后,密封反应炉并疏散,然后在含10%氢气的纯氩气氛围中反应12小时。然后,炉子在2-2.5Ĥ内加热到实验温度。样品在融化后,开始测量表面张力。用一个高分辨率的CCD相机
45
捕捉此时样品的轮廓。然后,用计算机来处理液态金属表面张力。液态Fe-Ti合金的表面张力随着时间的推移逐渐增加。在图。2中展示了含钛0.46%的铁钛合金的表面张力随时间变化的一个典型的例子。随着时间的增加,表面张力逐渐增加并达到一个平衡值。钛的浓度越高,达到平衡值的时间越长。在下一节中可以发现,可能的原因是钛对养的亲和力比铁对养的亲和力强。整个图像处理序列和实验细节在我们以前的文献中已介绍过。
图2.液态Fe-0.46%Ti合金的表面张力随时间的变化
3结果与讨论
图3.在1823K的液态Fe-Ti合金的表面张力
46
在含0.22-1.8%钛的集中区域并在1823K下测量液态Fe-Ti合金的表面张力,所有的测量结果都反应如图3所示。值得注意的是,表面张力随着钛含量增加略有降低。
此外,目前的结果表明比以前报道的值更高。在解决之前,它被认为是在以前的实验中使用的样本可能已经被表面活性氧和硫等杂质污染。从理论上说,液态Fe-Ti合金的表面张力可用测得的热力学和热物理数据并用巴特勒模型可以计算出。以下一式就是巴特勒模型表示的铁钛二元合金。
s1Ex,sRT1NTiAlnGFebFeAFe1NTi,bbsGExFeT,NTiT,NTi
_FesRTNTiEx,sEx,s1sbTilnGTiT,NTiGTiT,NTibATiNTiATi
表3.热力学和热物理数据计算
其中R是普适气体常数;T是温度;Nis表示i在表面的摩尔分数;Nbi表示i
sEx,sNsi在分散中的摩尔分数;Gi(T,Ni)作为i表面的局部过剩自由能是T和的函数;
GiEx,b(T,Nib)作为i体积的局部过剩自由能是T和Nbi的函数;As是组分的摩尔表面
积,其中Vi是元素i的摩尔体积。常数1.091引入单层紧密堆积配置的假说。部分多余的表面自由能由公式(2)假设部分过剩吉布斯自由能在大部分的能源和表面有相同的浓度依赖性得到。常数(0.83)纯金属的值由表面和散装不同的结合能所确定,这是普遍适用的合金表面和散装之间的结合能差。求解方程(1)要通过建立热物理数据和表3中所列的液态铁钛合金过剩自由能来解决,表面张力的计算为得到散装浓度在1823K的功能。
47
计算出的表面张力(实线)和实验结果绘制在图4。有计算和测量之间的细微差别,这种差异随着钛浓度max(67mN/ m)增加而增加。为了使测量和计算结果相互协调,钛液体表面张力应该是836mN/ m在1823K,其中在大约一半的报告值的状态下冷却。因此,它认为,在目前工作的实验结果比估计值稍低。
图4.对Fe-Ti合金的表面张力和表面浓度的计算结果
首先,我们可以考虑氧的亲和力的变化是熔化的铁钛合金表面钛浓度增加的一个原因。最近,Lee等人发现液态Fe-Cr合金的氧吸附含量的增加是在不断增加的
48
氧分压中增加铬的量而增加。他们认为,增加合金元素(铬)在这种情况下,具有较强对氧的亲和力比增加铁来使氧吸附。同样,它可能是液态Fe-Ti合金中的钛增强了氧吸附在合金表面上。从化学角度讲,吸附在金属表面上的氧气可以和大宗金属的可溶性氧平衡。可溶性氧含量的计算可采用钛和铁液中的氧溶解的标准吉布斯能的变化来得到。
OTiO这里eTiTi,eTi,eO,eO分别是0.043,-3.49,-1.15,和-0.20.计算出的大部分样
品的可溶性氧含量(除含有样本1.8%钛)是7-15的PPM,这比以前的实验水平非常低,但更接近后来的实验。 (见表2)在实验中,通过流动的Ar-H2气体保持强的还原性气氛。因此,下面的反应机制,可以考虑:1)最初在表面去除可溶性氧气通过与氢气反应,2)发生的样品或反应表面层和有局部表面张力的不同而引起的对流的氧浓度梯度可能导致大量氧气从里面流向外面。3)里面钛的氧化物随后就散开了。然而,在这种情况下,表面上的氧气可以有相同或低于里面氧气的化学势。假设氧污染是在测量时表面张力较低的主要原因,,它被认为是与钛氧亲和力强有关系。因此,氧的脱附可能是决定速度的关键。因此,目前是不可能定量评价氧对Fe-Ti合金表面张力的作用。
在实验过程中,氩气气氛转为为2小时。在氩气气氛(空心圆),表面张力几乎保持恒定值。一旦气体环境中返回到AR-10%的H2,表面张力突然下降了约50mN/m。Kishimotoetal 建议另一个原因是氢在合金表面的吸附。最近,我们调查的的铁0.91mass%钛合金的表面张力从氩气氢气氛围到氩气氛围再到氩气氢气氛围的变化过程中降低。图.5,液态Fe-Ti合金表面张力的变化是由于大气中的成分变化。
49
图5.液态Fe-0.91mass%Ti合金表面张力随着时间的增加的变化
据发现,当气体的气氛从氩气(空心圆)切换到的Ar-H2混合气体(实心圆),表面张力突然下降50mN/m。最初,表面张力随时间增加,因为氧气是由氢排除。当气体环境转为氩气时,氧气不能再被排除表面张力几乎保持恒定值,通过重新引进的Ar-H2混合气体的表面张力突然下降。约70分钟后,表面张力开始重新增加,因为氢的存在表面的氧气减少了,并最终达到图3中所示的值。在纯氩气的气氛中,表面张力是不可能和在Ar-H2混合气体中一样高Yokoyama等人的报告。可能,它关系到在引入氩气时的残余氧。从巴特勒的模型中发现,没有氧气或氢气钛的表面浓度与开放体系几乎相同。(图4(b)),因此,可以预计,在钛表面吸附的氢随着钛的浓度增加而增加。另一方面,在氧的存在下,一旦氧气先吸附在表面则在金属表面吸附氢的机会将减少,因为氧气会占据钛和铁的表面(或优先于钛点)。还有,影响表面张力下降时氢氧的吸附效果没有只有氧是好。表面张力在图5所示的b点氢的影响强烈比在图5所示的a点。即,在没有氧气的纯氢气气氛的假设条件下含铁0.91%的钛的表面张力值与没有氧和氢的计算值相比之下下降值可能超过50MN/ M。在图4中可发现,含Fe-1.8%Ti合金样品表面张力的测量和计算之间的差67mN/m。基于此,似乎氢吸附增加表面张力是因为Ar-H2气氛中钛的浓度增加。此外,应当指出,即使氢吸附液态Fe-Ti合金的表面张力,但表面张力下降不会如此大的范围(400mN/米)Kishimoto等建议。被认为该报告的值低是由于氧和氢吸附。然而,此刻,在目前的测量条件下很难说影响表面张力降低的主要因素是什么(在目前的实验条件即使认为影响表面张力下降的因素氢吸附的效果远远比氧
50
强),因为没有氧气的氢吸附机理还不是很清楚。为了澄清氢氧竞争吸附机制,预计更多的实验数据和可接受的吸附模型将会出现。然而,在目前的工作,约束降法测定铁钛液体的表面张力可靠一些。它被证实的液态Fe-Ti合金的表面张力对钛含量的依赖要小得多比别的报告。
4.结论
在本研究中,液态Fe-Ti合金的表面张力已确定在1823K使用约束降法在Ar-10%H2混合气体气氛中。发现,液态Fe-Ti合金的表面张力随钛含量的增加而略有降低。认为,表面张力值在本研究中随钛含量增加略有下降是由于钛表面有氢或者氧的吸附。然而,即使氢或氧的吸附降低了液态Fe-Ti合金的表面张力,前人建议表面张力下降不会太大。
鸣谢
这项工作是ISIJ研究推广资助和支持再次表示感谢。
参考文献
1) J. Takamura and S. Mizoguchi: CAMP-ISIJ, 3 (1990), 276. 2) K. Mukai and W. Lin: Tetsu-to-Hagané, 80(1994), 527. 3) K. Mukai and W. Lin: Tetsu-to-Hagané, 80(1994), 533.
4) Y. Wang, M. Valdez and S. Sridar: Z. Metallkd. , 93(2002), 12. 5) L. A. Smirnov, S. I. Popel and B. V.Tsarevskii:Izv. VUZ. ChernayaMetall.3 (1965), 10.
6) M. Kishimoto, K. Mori and Y. Kawai: J.Jpn. Inst. Met. , 48(1984),413. 7) J. Lee, A. Kiyose, S. Nakatsuka, M. Nakamoto and T. Tanaka: ISIJInt. 44(2004), 1793.
8) T. Yokoyama, Y. Ueshima, K. Sasai, Y. Mizukami, H. Kakimi and M. Kato: Tetsu-to-Hagané,83(1997), 563.
9) B.J. Keene: Int. Mater. Rev., 33(1988), 1.
10) T.Tanaka, M. Nakamoto, R. Oguni, J. Lee and S.Hara:Z. Metallkd.95(2004), 818.
11) J.A.V.Butler: Proc.R. Soc.(London) A,135A(1932), 348.
51
12) C.H.P.Lupis: Chemical Thermodynamics of Materials, North-Holland, New-York, (1983), 403.
13) K.S.Yeum, R.Speiser and D.R.Poirier:Metall. Trans,20(19),693. 14) T. Tanaka, S.Hara, M.Ogawa and T. Ueda: Z.Metallkd.83(1998),368. 15) P. F. Paradis, T. Ishikawa and S.Yoda: Int.J.Thermophys . 23(2002),825. 16) T. Iida and R. I. L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, (1988), 71.
17) K. C. Hari Kumar, P. Wollants and L. Delaey: Calphad, 18(1994),223. 19) J. Lee, K. Yamamoto and K. Morita: Metall. Mater. Trans. B, 36B(2005), 241.
19) Steelmaking Data Source Book, The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking, Gordon and Breach Science Publishers, New York, (1988), 165.
20) E. T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, (1980), 22.
52
致谢
在我整个课程设计的过程中,张胜全老师倾注了大量的心血和汗水,无论是在的选题、构思和资料的收集方面,还是在论文的撰写以及成文定稿方面,我都得到了老师耐心、认真的指导。论文从选题到顺利完成,倾注了导师的大量心血,我的每一点进步都与导师的教诲息息相关,特别是他广博的学识、深厚的学术素养、严谨的治学精神和一丝不苟的工作作风使我终生受益,能有这样的恩师是我今生永远的财富。在此我向导师表示崇高的敬意和衷心的感谢!
在实验过程中也得到了硕士生陈安涛师兄的细心细致教诲和无私的帮助,同时还有同组成员谢宗敏、周民祖、李世文等同学的帮助,在此表示衷心的感谢!
感谢所有关心、支持、帮助过我的良师益友。
感谢我的亲人在我多年的学习过程中给予了我的关心、帮助和鼓励,使我能够顺利完成学业!
最后,向在百忙中抽出时间对本文进行评审并提出宝贵意见的各位专家表示衷心地感谢!
致谢人:王培鑫 2012年6月
53
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- dcrkj.com 版权所有 赣ICP备2024042791号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务